Disjoint dynamics on weighted Orlicz spaces

Chung-Chuan Chen

National Taichung University of Education, Taiwan

Joint work with Prof. S. Öztop and Prof. S.M. Tabatabaie

2021 TMS Annual Meeting

★ Ξ →

• X: a complex Banach space.

• $T: X \to X$ a bounded linear operator.

 T is topologically transitive if for any nonempty open subsets U and V of X, Tⁿ(U) ∩ V ≠ Ø for some n ∈ N.

• *T* is **topologically mixing** if for any nonempty open subsets *U* and *V* of *X*, $T^n(U) \cap V \neq \emptyset$ from some *n* onwards.

Definition (Bès and Peris, JMAA 2007)

Given $N \ge 2$, the operators T_1, T_2, \dots, T_N on a Banach space X are *disjoint topologically transitive* if given nonempty open sets $U, V_1, \dots, V_N \subset X$, there is some $n \in \mathbb{N}$ such that

$$\emptyset \neq U \cap T_1^{-n}(V_1) \cap T_2^{-n}(V_2) \cap \cdots \cap T_N^{-n}(V_N).$$

If the above condition is satisfied from some *n* onwards, then T_1, T_2, \dots, T_N are called *d*-mixing.

Theorem (Bès and Peris, JMAA 2007)

Let $1 \le p < \infty$. For l = 1, 2, ..., N, let $(w_{l,j})_{j \in \mathbb{Z}}$ be a bounded sequence of positive numbers, and let B_l be the associated backward shift on $\ell^p(\mathbb{Z})$ given by $B_l e_j := w_{l,j} e_{j-1}$. For any integers $1 \le r_1 < r_2 < ... < r_N$, the following conditions are equivalent. (i) $B_1^{r_1}, B_2^{r_2}, ..., B_N^{r_N}$ are disjoint topologically transitive. (ii) Given $\varepsilon > 0$ and $q \in \mathbb{N}$, there exists $m \in \mathbb{N}$ so that for all $|j| \le q$, we have:

Theorem (continued)

(a) if
$$1 \le l \le N$$
,

$$\prod_{i=j-r_lm+1}^{j} w_{l,i} < \varepsilon \quad and \quad \prod_{i=j+1}^{j+r_lm} w_{l,i} > \frac{1}{\varepsilon}.$$
(b) if $1 \le s < l \le N$,

$$\frac{\prod_{i=j+(r_l-r_s)m+1}^{j+r_lm} w_{s,i}}{\prod_{i=j+1}^{j+r_lm} w_{l,i}} < \varepsilon \quad and \quad \frac{\prod_{i=j-(r_l-r_s)m+1}^{j+r_sm} w_{l,i}}{\prod_{i=j+1}^{j+r_sm} w_{s,i}} < \varepsilon.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

• The bilateral shift on $\ell^p(\mathbb{Z})$

• The translation operator on the Lebesgue space $L^{p}(G)$ of locally compact groups G

• G: a locally compact group with identity e.

• λ : a right Haar measure of G.

• $L^{p}(G)$: the complex Lebesgue space of G w.r.t. λ .

• σ : a complex Borel measure on G.

• The convolution operator $T_{\sigma}: L^{p}(G) \to L^{p}(G)$ is defined by

$$T_{\sigma}(f) = f * \sigma$$
 $(f \in L^{p}(G))$

where the convolution

$$f * \sigma(x) = \int_G f(xy^{-1}) d\sigma(y)$$

exists λ -almost everywhere.

• If $\sigma = \delta_a$ which is a unit point mass at $a \in G$, then

$$(T_{\sigma}f)(x) = \int_{\mathbb{R}} f(xy^{-1}) d\delta_{a}(y) = f(xa^{-1})$$

which is called a translation operator.

A function $w: G \to (0,\infty)$ is called a weight on G.

One can define a weighted translation operator by

$$T_{\delta_a,w}f(x) = w(x)(f * \delta_a)(x)$$

= $w(x) \int_G f(xy^{-1}) d\delta_a(y)$
= $w(x)f(xa^{-1})$ $(x \in G).$

4 3 b

Example

Let $G = \mathbb{Z}$. Then the bilateral forward weighted shift T with a positive weight sequence $(a_j)_{j \in \mathbb{Z}}$ is the weighted translation $T_{\delta_1, w * \delta_1}$ on $\ell^p(\mathbb{Z})$ with weight $w(j) = a_j$. Indeed,

$$T_{1,w*\delta_1}e_j(x) = (w*\delta_1)(x) \cdot (f*\delta_1)(x)$$

= $\sum_{y\in\mathbb{Z}} w(x-y)\delta_1(y) \cdot \sum_{z\in\mathbb{Z}} e_j(x-z)\delta_1(z)$
= $w(x-1) \cdot e_j(x-1)$
= $w(j) \cdot e_{j+1}(x).$

Hence

$$T_{\delta_1,w*\delta_1}e_j=a_j\cdot e_{j+1}.$$

I ≡ →

• The translation operator on the Lebesgue space $L^{p}(G)$

• The translation operator on the Orlicz space $L^{\Phi}(G)$

Definition (Young functions)

A continuous, convex and even function $\Phi : \mathbb{R} \to \mathbb{R}$ is called a *Young function* if it satisfies $\Phi(0) = 0$, $\Phi(t) > 0$ for t > 0, and $\lim_{t\to\infty} \Phi(t) = \infty$.

Example

Both

$$\Phi(t)=rac{|t|^p}{p} \quad (1\leq p<\infty)$$

and

$$\Phi(t) = |t|^{lpha}(1+|\log|t||) \quad (lpha>1)$$

are Young functions.

同 ト イ ヨ ト イ ヨ ト

 For a Young function Φ, the complementary function Ψ of Φ is given by

$$\Psi(y) = \sup\{x|y| - \Phi(x) : x \ge 0\}$$
 $(y \in \mathbb{R}),$

which is also a Young function.

 If Ψ is the complementary function of Φ, then Φ is the complementary function of Ψ, and they satisfy the Young inequality

$$xy \leq \Phi(x) + \Psi(y)$$
 $(x, y \geq 0).$

Example

Let

$$\Phi(x) = \frac{|x|^p}{p} \quad (1$$

Then the complementary function Ψ of Φ is given by

$$\Psi(y) = rac{|y|^q}{q}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. In the case,

$$xy \leq \Phi(x) + \Psi(y) = rac{x^p}{p} + rac{y^q}{q} \qquad (x, y \geq 0).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Definition

Let G be a locally compact group with identity e and a right Haar measure λ . Then the Orlicz space $L^{\Phi}(G)$ is defined by

$$L^{\Phi}(G) = \left\{ f: G
ightarrow \mathbb{C} : \int_{G} \Phi(lpha |f|) d\lambda < \infty ext{ for some } lpha > 0
ight\}$$

where f is a Borel measurable function.

 The Orlicz space is a Banach space under the Orlicz norm defined for f ∈ L^Φ(G) by

$$\|f\|_{\Phi} = \sup\left\{\int_{G} |f_{V}| d\lambda : \int_{G} \Psi(|v|) d\lambda \leq 1
ight\}.$$

• One can also define the Luxemburg norm on $L^{\Phi}(G)$ by

$$N_{\Phi}(f) = \inf \left\{ k > 0 : \int_{\mathcal{G}} \Phi\left(\frac{|f|}{k}\right) d\lambda \leq 1
ight\}.$$

It is well known that these two norms above are equivalent.

Example

Let $\Phi(t) := \frac{|t|^p}{p}$ where $1 . Let G be a locally compact group. Then the Orlicz space <math>L^{\Phi}(G)$ is the Lebesgue space $L^{p}(G)$.

Corollary (Rao and Ren, Book 1991, Corollaries 3.4.5)

Let Φ be Δ_2 -regular. Then the space $C_c(G)$ of all continuous functions on G with compact support is dense in $L^{\Phi}(G)$.

Theorem (Rao and Ren, Book 1991, Theorem 3.5.1)

Let G be a second countable locally compact group, and let Φ be a Δ_2 -regular Young function. Then the Orlicz space $L^{\Phi}(G)$ is separable.

Definition

A Young function is said to be Δ_2 -regular if there exist a constant M > 0 and $t_0 \ge 0$ such that $\Phi(2t) \le M\Phi(t)$ for $t \ge t_0$.

→ 3 → < 3</p>

Example

Both Young functions

$$\Phi(t)=rac{|t|^{
ho}}{
ho} \quad (1\leq
ho <\infty)$$

 and

$$\Phi(t) = |t|^{\alpha}(1+|\log|t||) \quad (\alpha>1)$$

are Δ_2 -regular.

回 と く ヨ と く ヨ と

æ

Weighted Orlicz spaces

• A continuous function $w: G \to (0,\infty)$ is called a *weight* on G if

$$w(xy) \leq w(x)w(y)$$
 $(x, y \in G).$

• One can define the weighted Orlicz space by

$$L^{\Phi}_w(G) := \{f : fw \in L^{\Phi}(G)\}.$$

• The norm

$$||f||_{\Phi,w} := ||fw||_{\Phi} \qquad (f \in L^{\Phi}_w(G))$$

is called a weighted Orlicz norm.

• $L^{\Phi}_{w}(G)$ is a Banach space with respect to the norm $\|\cdot\|_{\Phi,w}$.

• Let $a \in G$ and δ_a be the unit point mass at a.

• A translation operator T_a on $L^{\Phi}_w(G)$ is defined by

$$(T_a f)(x) = (f * \delta_a)(x) = \int_{y \in G} f(xy^{-1})\delta_a(y) = f(xa^{-1})$$

where $x \in G, f \in L^{\Phi}_w(G)$.

Theorem (Chen, Öztop and Tabatabaie, Complex Anal. Oper. Theory 2020)

Let G be a second countable locally compact group, and let w be a weight on G. Let Φ be a Δ_2 -regular Young function. Given some $N \ge 2$, let $a_l \in G$ be aperiodic, and let T_{a_l} be a translation on $L^{\Phi}_w(G)$ for $1 \le l \le N$. Then we have (ii) \Rightarrow (i). (i) $T = T_{a_l} = T_{a_l}$ are disjoint table given by transitive on

(i) $T_{a_1}, T_{a_2}, \dots, T_{a_N}$ are disjoint topologically transitive on $L^{\Phi}_w(G)$.

A 3 3 4 4

Theorem (continued)

(ii) For each compact subset K ⊆ G with λ(K) > 0, there exist a sequence of Borel sets (E_k) in K and a strictly increasing sequence (n_k) ⊂ N such that

$$\lim_{k\to\infty}\sup_{v\in\Omega}\int_{K\setminus E_k}|v(x)|w(x)d\lambda(x)=0,$$

for $1 \leq l \leq N$,

$$\lim_{k \to \infty} \sup_{v \in \Omega} \int_{E_k} |v(xa_l^{\pm n_k})| w(xa_l^{\pm n_k}) d\lambda(x) = 0$$

and for $1 \leq l, s \leq N$ with $l \neq s$,

$$\lim_{k\to\infty}\sup_{v\in\Omega}\int_{E_k}|v(xa_s^{-n_k}a_l^{n_k})|w(xa_s^{-n_k}a_l^{n_k})d\lambda(x)=0$$

where Ω is the set of all Borel functions v on G satisfying $\int_{G} \Psi(|v|) d\lambda \leq 1$.

Chung-Chuan Chen

Corollary

Let G be a second countable locally compact group, and let w be a weight on G. Let Φ be a Δ_2 -regular Young function. Given some $N \ge 2$, let $a_l \in G$ be aperiodic, and let T_{a_l} be a translation on $L^{\Phi}_w(G)$ for $1 \le l \le N$. Then we have (ii) \Rightarrow (i).

(i) $T_{a_1}, T_{a_2}, \dots, T_{a_N}$ are disjoint topologically mixing on $L^{\Phi}_w(G)$.

- 4 B b 4 B b

Corollary (continued)

(ii) For each compact subset $K \subseteq G$ with $\lambda(K) > 0$, there exists a sequence of Borel sets (E_n) in K such that

$$\lim_{n\to\infty}\sup_{\nu\in\Omega}\int_{K\setminus E_n}|\nu(x)|w(x)d\lambda(x)=0,$$

for $1 \leq l \leq N$,

$$\lim_{n\to\infty}\sup_{v\in\Omega}\int_{E_n}|v(xa_l^{\pm n})|w(xa_l^{\pm n})d\lambda(x)=0$$

and for $1 \leq l, s \leq N$ with $l \neq s$,

$$\lim_{n\to\infty}\sup_{v\in\Omega}\int_{E_n}|v(xa_s^{-n}a_l^n)|w(xa_s^{-n}a_l^n)d\lambda(x)=0$$

where Ω is the set of all Borel functions v on G satisfying $\int_{G} \Psi(|v|) d\lambda \leq 1$.

Lemma (Chen and Chu, PAMS 2011)

An element a in a locally compact group G is aperiodic if, and only if, for each compact subset $K \subset G$, there exists $N \in \mathbb{N}$ such that $K \cap Ka^{\pm n} = \emptyset$ for all n > N.

 In many familiar non-discrete groups, including the additive group ℝⁿ, the Heisenberg group and the affine group, all elements except the identity are aperiodic. In the following result, we need one more assumption that

$$K \cap Ka_s^{-n}a_l^n = \emptyset$$

holds for $l \neq s$ and $n \in \mathbb{N}$ large enough.

 It is easy to see this property naturally holds for some groups. Indeed, let G = ℝ or ℤ. Then the element a_s⁻¹a_l ∈ G is aperiodic. Hence for n large enough,

$$\emptyset = K \cap K(a_s^{-1}a_l)^n = K \cap Ka_s^{-n}a_l^n.$$

Theorem

Let G be a second countable locally compact group, and let w be a weight on G. Let Φ be a Δ_2 -regular Young function. Given some $N \ge 2$ and for each compact subset $K \subset G$, let $a_l \in G$ be aperiodic for $1 \le l \le N$, and satisfy $K \cap Ka_s^{-n}a_l^n = \emptyset$ for $l \ne s$ and $n \in \mathbb{N}$ large enough. Let T_{a_l} be a translation on $L_w^{\Phi}(G)$. Then we have (i) \Rightarrow (ii). (i) $T_{a_1}, T_{a_2}, \dots, T_{a_N}$ are disjoint topologically transitive on $L_w^{\Phi}(G)$.

Theorem (continued)

(ii) For each compact subset K ⊆ G with λ(K) > 0, there exist a sequence of Borel sets (E_k) in K and a strictly increasing sequence (n_k) ⊂ N such that

$$\lim_{k\to\infty}\sup_{v\in\Omega}\int_{K\setminus E_k}|v(x)|w(x)d\lambda(x)=0,$$

for $1 \leq l \leq N$,

$$\lim_{k \to \infty} \sup_{v \in \Omega} \int_{E_k} |v(xa_l^{\pm n_k})| w(xa_l^{\pm n_k}) d\lambda(x) = 0$$

and for $1 \leq l, s \leq N$ with $l \neq s$,

$$\lim_{k\to\infty}\sup_{v\in\Omega}\int_{E_k}|v(xa_s^{-n_k}a_l^{n_k})|w(xa_s^{-n_k}a_l^{n_k})d\lambda(x)=0$$

where Ω is the set of all Borel functions v on G satisfying $\int_{G} \Psi(|v|) d\lambda \leq 1$.

Chung-Chuan Chen

Corollary

Let G be a second countable locally compact group, and let w be a weight on G. Let Φ be a Δ_2 -regular Young function. Given some $N \ge 2$ and for each compact subset $K \subset G$, let $a_l \in G$ be aperiodic for $1 \le l \le N$, and satisfy $K \cap Ka_s^{-n}a_l^n = \emptyset$ for $l \ne s$ and $n \in \mathbb{N}$ large enough. Let T_{a_l} be a translation on $L_w^{\Phi}(G)$. Then we have (i) \Rightarrow (ii).

(i) $T_{a_1}, T_{a_2}, \dots, T_{a_N}$ are disjoint topologically mixing on $L^{\Phi}_w(G)$.

Corollary (continued)

(ii) For each compact subset $K \subseteq G$ with $\lambda(K) > 0$, there exists a sequence of Borel sets (E_n) in K such that

$$\lim_{n\to\infty}\sup_{\nu\in\Omega}\int_{K\setminus E_n}|\nu(x)|w(x)d\lambda(x)=0,$$

for $1 \leq l \leq N$,

$$\lim_{n\to\infty}\sup_{v\in\Omega}\int_{E_n}|v(xa_l^{\pm n})|w(xa_l^{\pm n})d\lambda(x)=0$$

and for $1 \leq l, s \leq N$ with $l \neq s$,

$$\lim_{n\to\infty}\sup_{v\in\Omega}\int_{E_n}|v(xa_s^{-n}a_l^n)|w(xa_s^{-n}a_l^n)d\lambda(x)=0$$

where Ω is the set of all Borel functions v on G satisfying $\int_{G} \Psi(|v|) d\lambda \leq 1$.

Example

Let $G = \mathbb{R}$ and $a_1 = 2, a_2 = 5$. Let w be a weight on \mathbb{R} . Then the translations T_2 and T_5 on $L^{\Phi}_w(\mathbb{R})$ are defined respectively by

$$T_2f(x)=f(x-2)$$
 and $T_5f(x)=f(x-5)$ $(f\in L^{\Phi}_w(\mathbb{R})).$

By the results above, operators T_2 and T_5 are disjoint topologically transitive if, and only if, given a compact subset $K \subseteq \mathbb{R}$, there exist a sequence of Borel sets (E_k) in K and a strictly increasing sequence $(n_k) \subset \mathbb{N}$ such that

Example (continued)

$$\lim_{k \to \infty} \sup_{v \in \Omega} \int_{K \setminus E_k} |v(x)| w(x) dx = 0,$$
$$\lim_{k \to \infty} \sup_{v \in \Omega} \int_{E_k} |v(x \pm 2n_k)| w(x \pm 2n_k) dx = 0,$$
$$\lim_{k \to \infty} \sup_{v \in \Omega} \int_{E_k} |v(x \pm 5n_k)| w(x \pm 5n_k) dx = 0$$

and

$$\lim_{k\to\infty}\sup_{v\in\Omega}\int_{E_k}|v(x\pm 3n_k)|w(x\pm 3n_k)dx=0$$

where Ω is the set of all Borel functions v on \mathbb{R} satisfying $\int_{\mathbb{R}} \Psi(|v(x)|) dx \leq 1$.

伺 と く ヨ と く ヨ と

3

Special case I

• Let T_{a_l} be generated by the power of an aperiodic element $a \in G$. That is, $a_l := a^{r_l}$ for $r_l \in \mathbb{N}$ and $1 \le r_1 < r_2 < \cdots < r_N$.

 In this case, we can remove this assumption of the property
 K ∩ Ka⁻ⁿ_saⁿ_l = ∅. Indeed, if a is aperiodic, then for n large
 enough,

$$K \cap Ka_s^{-n}a_l^n = K \cap Ka^{-r_s n}a^{r_l n} = K \cap Ka^{(r_l - r_s)n} = \emptyset$$

follows automatically.

A B > A B >

Theorem

Let G be a second countable locally compact group, and let w be a weight on G. Let Φ be a Δ_2 -regular Young function, and let $a \in G$ be aperiodic. Given $r_l \in \mathbb{N}$ with $1 \leq r_1 < r_2 < \cdots < r_N$, let $T_{a^{r_l}}$ be a translation on $L^{\Phi}_w(G)$ for $1 \leq l \leq N$. Then the following conditions are equivalent.

(i) $T_{a'^1}, T_{a'^2}, \dots, T_{a'^N}$ are disjoint topologically transitive on $L^{\Phi}_w(G)$.

Theorem (continued)

(ii) For each compact subset K ⊆ G with λ(K) > 0, there exist a sequence of Borel sets (E_k) in K and a strictly increasing sequence (n_k) ⊂ N such that

$$\lim_{k\to\infty}\sup_{\nu\in\Omega}\int_{K\setminus E_k}|\nu(x)|w(x)d\lambda(x)=0,$$

for $1 \leq l \leq N$,

$$\lim_{k\to\infty}\sup_{v\in\Omega}\int_{E_k}|v(xa^{\pm r_ln_k})|w(xa^{\pm r_ln_k})d\lambda(x)=0$$

and for $1 \leq l, s \leq N$ with $l \neq s$,

$$\lim_{k\to\infty}\sup_{v\in\Omega}\int_{E_k}|v(xa^{(r_l-r_s)n_k})|w(xa^{(r_l-r_s)n_k})d\lambda(x)=0$$

where Ω is the set of all Borel functions v on G satisfying $\int_{G} \Psi(|v|) d\lambda \leq 1$.

Chung-Chuan Chen

200

Corollary

Let G be a second countable locally compact group, and let w be a weight on G. Let Φ be a Δ_2 -regular Young function. Let $a \in G$ be aperiodic, and let T_{a^l} be a translation on $L^{\Phi}_w(G)$ for $1 \leq l \leq N$. Then the following conditions are equivalent.

(i) $T_a, T_{a^2}, \dots, T_{a^N}$ are disjoint topologically transitive on $L^{\Phi}_w(G)$.

伺 ト く ヨ ト く ヨ ト

Corollary (continued)

(ii) For each compact subset $K \subseteq G$ with $\lambda(K) > 0$, there exist a sequence of Borel sets (E_k) in K and a strictly increasing sequence $(n_k) \subset \mathbb{N}$ such that

$$\lim_{k\to\infty}\sup_{v\in\Omega}\int_{K\setminus E_k}|v(x)|w(x)d\lambda(x)=0,$$

and for
$$1 \le l \le N$$
, $\lim_{k \to \infty} \sup_{v \in \Omega} \int_{E_k} |v(xa^{\pm ln_k})| w(xa^{\pm ln_k}) d\lambda(x) = 0$

where Ω is the set of all Borel functions v on G satisfying $\int_{G} \Psi(|v|) d\lambda \leq 1$.

Corollary

Let G be a second countable locally compact group, and let w be a weight on G. Let Φ be a Δ_2 -regular Young function. Let $a \in G$ be aperiodic, and let $T_{a'}$ be a translation on $L^{\Phi}_w(G)$ for $1 \leq l \leq N$. Then $T_a, T_{a^2}, \dots, T_{a^N}$ are disjoint topologically transitive if, and only if, $T_a \oplus T_{a^2} \oplus \dots \oplus T_{a^N}$ is topologically transitive.

伺い イラト イラト

Theorem (Bès, Martin, Peris and Shkarin, JFA 2012, Theorem 3.4)

Let T be a continuous linear operator on a Banach space X. If T satisfies the Kitai Criterion, then T, T^2, \dots, T^N are disjoint topologically mixing for each $N \in \mathbb{N}$.

An operator T on a Banach space X is said to satisfy the Kitai Criterion if there exist dense subsets X₀ and Y₀ of X and a map S : Y₀ → Y₀ such that TSy = y, Tⁿx → 0 and Sⁿy → 0 for each y ∈ Y₀ and x ∈ X₀.

Proposition

Let G be a second countable locally compact group, and let w be a weight on G. Let Φ be a Δ_2 -regular Young function, and let $a \in G$ be aperiodic. Let T_a be a translation on $L^{\Phi}_w(G)$. Then (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv).

(i) For each compact subset $K \subseteq G$ with $\lambda(K) > 0$, there exists a sequence of Borel sets (E_n) in K such that

$$\lim_{n\to\infty}\sup_{v\in\Omega}\int_{K\setminus E_n}|v(x)|w(x)d\lambda(x)=0$$

and

$$\lim_{n\to\infty}\sup_{v\in\Omega}\int_{E_n}|v(xa^{\pm n})|w(xa^{\pm n})d\lambda(x)=0$$

where Ω is the set of all Borel functions v on G satisfying $\int_{G} \Psi(|v|) d\lambda \leq 1$.

Proposition (continued)

- (ii) T_a satisfies the Kitai Criterion.
- (iii) T_a is topologically mixing on $L^{\Phi}_w(G)$.
- (iv) $T_{a^1}, T_{a^2}, \dots, T_{a^N}$ are disjoint topologically mixing.

伺 と く ヨ と く ヨ と

3

- K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Universitext, Springer, 2011.
- F. Bayart and É. Matheron, Dynamics of linear operators, Cambridge Tracts in Math. **179**, Cambridge University Press, Cambridge, 2009.
- C-H. Chu, Matrix convolution operators on groups, Lecture Notes in Math. **1956**, Springer-Verlag, Heidelberg, 2008.
- G.B. Folland, A course in abstract harmonic analysis, CRC Press, Boca Raton, 1995.
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., **146**, Dekker, New York, 1991.

< 3 > < 3 >

Thank you so much!

Image: Image:

э